
The world runs on code. We secure it.

AppSec Considerations
For Modern Application
Development
A Comprehensive Guide for Leaders and Practitioners – Part 3

E-BOOK | APPSEC CONSIDERATIONS FOR MODERN APPLICATION DEVELOPMENT | 2

Table of Contents
Introduction	

A Short Discussion About Risk	

Managing Applicative Code Risks in MAD	

Managing Container Code Risks in MAD	

Managing Infrastructure as Code Risks in MAD

Managing Developer AppSec Awareness and Training in MAD	

Application Security Testing Challenges in MAD

Seven AST Tips to Consider in MAD	

Conclusion

3

3

4

8

9

10

13

14

15

E-BOOK | APPSEC CONSIDERATIONS FOR MODERN APPLICATION DEVELOPMENT | 3

A Short Discussion
About Risk
Looking at the long list of risks we highlighted in Part 2, you’ll see you can manage some risks with
better AppSec practices, others with improved application security testing (AST) approaches, and
some with enhanced AppSec awareness and training for developers—but there’s no silver bullet that
will eliminate all software risk. You need a broad set of strategies and solutions to cover all the angles.
Let’s take a closer look.

Introduction
In Part 1 of this e-book series, we looked at the many facets of modern application development (MAD),
including benefits and challenges to be expected. In Part 2, we went deeper into the security risks that
surface in MAD and how they can impact any organization. If you’ve read Part 1 and Part 2, you should
have a solid idea of what MAD entails, and what security risks to keep in mind.

In Part 3, we’ll look at many modern application security (AppSec) considerations leaders and practitioners
should be familiar with. Since MAD significantly changes software development practices in general,
AppSec practices need to evolve as well. We’ll wrap things up with some tips you should consider as
you plan and pivot your organization’s AppSec initiatives to address this new paradigm.

At Checkmarx, our mission is to improve software security for organizations worldwide by helping them
reduce exploitable vulnerabilities. As the world adopts modern application development, we hope this
e-book series can help.

E-BOOK | APPSEC CONSIDERATIONS FOR MODERN APPLICATION DEVELOPMENT | 4

Managing Applicative
Code Risks in MAD
Of all the code elements in a modern application, the first type that comes to mind is the applicative
code: the source code that makes up all the functions the software performs from the “applications”
perspective. Applicative code can be developed in-house or borrowed from a third party (e.g., open
source). In MAD, however, open source comes with some caveats.

Open Source Code

> What an SBOM Is, and Why You Need One

It’s easy to understand why open source is so pervasive. By importing open source libraries, components,
and other resources into applications, developers avoid having to reinvent the wheel. They can reuse
prewritten code, freeing up more time to code innovative features that don’t yet exist.

Open source has its downsides, though. To avoid the security and compliance challenges that often
accompany open source, developers and security teams need full visibility into the open source they
use in applicative code, including its associated risks. Because of this (and partly driven by recent
supply chain attacks and new government legislation), the concept of a software bill of materials
(SBOM) is becoming more prominent in the context of open source.

“SBOM” is a term adapted from industrial manufacturing. A “BOM” is a list of raw materials or assembly
components, along with the quantities of each, needed to manufacture a complete product. Think of
it as a list of ingredients. The BOM serves as a verification document and helps ensure all necessary
parts are present, available, and in the proper quantities. If a part is missing or its delivery is delayed,
for example, there would be a flag in the BOM showing the issue with that component.

An SBOM, then, usually lists open source packages, libraries, and components found in a certain
software application. For example, you may have a node.js project where the node_modules folder
contains all the packages required to build and run the application.

If any items in the SBOM turn out to contain vulnerabilities or malicious code, your software pipeline is
at risk, and affected items must be updated or replaced. If the application imports libraries from NPM,
Maven Central, or any other registry, you can count them as open source parts of your application. The
key here is to understand what really goes into an application your organization relies on.

E-BOOK | APPSEC CONSIDERATIONS FOR MODERN APPLICATION DEVELOPMENT | 5

> Why You Need an Accurate Parts List for Your Applications

> Mitigating Open Source and Supply Chain Risk

With complete knowledge of all parts of your applications and what’s required to build or compile them,
you can mitigate a whole series of issues and risks. For example, if a new open source vulnerability is
disclosed, you can check affected versions of the code against your SBOM. If you have matches, you
can identify affected systems and take steps to remediate associated risks.

Let’s look at another example. Suppose you were to discover that a library or dependency has been
removed from a registry for some reason (e.g., license changes, legislative requirements, depreciation,
lack of community support, maintainer decision). You wouldn’t be able to keep using that component
without potentially increasing risk, so you’d have to use a different version or consider a replacement.
If you maintained an accurate SBOM, you’d be able to improve risk awareness and effectively mitigate
that risk.

The easiest and most reliable way to mitigate risk in the open source software supply chain is to
ensure you get open source from its originator, validating it against the posted hash images. In some
cases, this minor effort can catch supply chain attacks before they happen. Getting your software from
the source isn’t always an option, though, especially since many organizations upload their open
source images to Docker Hub or add them to a central repository like Maven. To complicate matters
further, you might also have to deal with private in-house registries.

Ultimately, having a better view of the open source your applications depend on will give you a clear
view of the vulnerabilities associated with its usage and your overall risk. In MAD, you need a solution
that provides an inventory of all open source in use and easily integrates with CI/build servers, artifact
servers, and development environments.

Software composition analysis (SCA) can help your organization build and maintain an SBOM. Using
an SCA solution designed for MAD, you can scan and compile the list of materials in your applications
and gain full visibility into your codebase. You also need to be able to apply a Zero Trust model to open
source to reveal potential attackers, locate hidden backdoors, and identify malicious code, with the
ultimate goal of identifying malicious packages and mitigating risk. To do this, you need supply chain
security solutions that provide behavioral analysis, link analysis, machine learning, and even threat
intel about the open source supply chain.

Now that we’ve covered open source, let’s look at proprietary code.

E-BOOK | APPSEC CONSIDERATIONS FOR MODERN APPLICATION DEVELOPMENT | 6

Traditional SAST scans can take hours to complete, and pushback is a given if full scans introduce
delays in the pipeline and slow down software on its way into production. As a result, organizations
often run fewer SAST scans, or they run full scans on a nightly basis to account for expected delays.
These approaches only sidestep the issue, though. The key to faster scans is to introduce a SAST
solution with incremental scanning capabilities, especially in light of microservices.

When a SAST solution is automated within source code management (SCM) tools, scans are launched
incrementally against the branch of code a developer is working on. Pull requests, push events, merge
requests, and so on will trigger incremental SAST scans and produce results when any code changes
are made.

If you’re trying to retrofit your existing scanning solutions into a MAD initiative, you’ll eventually see
that SAST solutions that only support full scans cause inevitable delays. To solve this, consider SAST
solutions that can incrementally scan at the source code level, and scan as early and often as possible.

Proprietary Code

Proprietary code is the code your developers write in-house, often created to provide the necessary
business logic to operationalize all open source code within an application. Like open source, security
vulnerabilities inside your proprietary code can also be exploited. Worse, any security vulnerability not
found until late in the software delivery cycle can be disastrous. Using a static application security
testing (SAST) solution to scan proprietary code for vulnerabilities is imperative.

Applications developed with this approach are often made up of multiple microservices, a foundational
element in MAD. Being able to scan incrementally for vulnerabilities at the source code level, without
compiling code into a fully working application, is a necessity in MAD. Microservices are only pieces of
the entire application, and their code should be scanned when any changes are made. The challenge is
that many SAST solutions require a fully compiled application to run successful scans, and this doesn’t
work well in MAD. Let’s look at why that is.

> Incremental Scans Are a Requirement in MAD

E-BOOK | APPSEC CONSIDERATIONS FOR MODERN APPLICATION DEVELOPMENT | 7

API Code

Other Uses of APIs in MAD

APIs Require Modern Security Approaches

APIs are incredibly important for modern applications. Rather than serving only to import third-party
data into an application, APIs are now an essential component of the architecture that makes modern
applications work. Most microservices rely on internal APIs to discover and communicate with each other.

If you’ve taken a chemistry class, you might remember building molecules using ball-and-stick models,
where balls represent atoms and sticks represent the bonds between them. In modern applications,
the balls are the microservices and the sticks are the APIs. If your microservices can’t talk to each other
because of an issue with the APIs connecting them, your microservices-based applications stop working.

Likewise, you can’t effectively deploy a containerized application on an orchestration platform like
Kubernetes without using APIs to manage the various moving parts of your cluster: worker nodes,
master nodes, pods, sidecars, and so on. It’s also hard to deploy applications scalably in the cloud
without using APIs to help automate application management, balance traffic, and so on. Although
it’s possible to manage cloud environments in other ways—via a web interface or CLI, for example—
an API-centric approach is usually the most efficient.

Conventional dot-com era use cases for APIs also remain important today. Developers still frequently
rely on APIs to integrate applications with external platforms as well as monitor and secure third-party
resources. In modern cloud native environments, though, the role of APIs extends far beyond integrations
and monitoring.

Since modern apps rely heavily on APIs to communicate between distributed and loosely coupled
applications and services, API security is high on the list of AppSec considerations. To ensure APIs
don’t become a liability, organizations need to prioritize API discovery, accountability, management,
and security on their list of risk mitigation techniques.

API security risks are fundamentally different from web application risks, so you need purpose-built
solutions that can identify internal and external APIs from an API contract, determine secure or insecure
APIs, discover shadow APIs, and spot missing or weak authentication and authorization. You also need
a way to visualize east-west traffic and service flow to show API relationships between services, and a
means of better understanding risk associated with connected APIs. It’s easy to see why API security
is becoming top of mind for MAD initiatives.

Next, let’s look at container code.

E-BOOK | APPSEC CONSIDERATIONS FOR MODERN APPLICATION DEVELOPMENT | 8

There are many reasons to use containers: They’re more agile and resource-efficient than virtual
machines (VMs), more flexible and secure than applications running directly on the OS, and easy
to orchestrate at massive scale using platforms like Kubernetes.

However, containers can also increase security risks. The benefits usually outweigh the risks, but
it’s important to assess and remediate the security problems containers can introduce. To reduce
container risks, you need to know where images came from, what’s in them, and what issues may
occur when they run.

In addition, you need solutions able to provide registry scanning that supports the Open Container
Initiative (OCI), Amazon ECR, private registries, and OpenShift. Container security scanning solutions
should also provide exploitable path information, remediation guidance, and integration into infrastructure
as code (IaC) testing solutions. Let’s look at that topic next.

Managing Container
Code Risks in MAD

E-BOOK | APPSEC CONSIDERATIONS FOR MODERN APPLICATION DEVELOPMENT | 9

Developers and DevOps teams use IaC tools to describe common infrastructure components in a
configuration language, which then serves as a blueprint to provision infrastructure services on demand.
IaC gives Devs and Ops teams better control of the change process and helps make deploying changes
more efficient and consistent. However, trying to implement IaC in real life often comes with risks.

> Spend some time with the tools

> Establish common engineering processes and best practices

> Use purpose-built security tools

Try to fully understand how each IaC tool works, including its quirks, open issues, and best practices.
Participate in meetups and subscribe to events so you can learn from other industry experts. This
will give you an advantage when trying to figure out how to perform tasks, simple and advanced alike,
without compromising your security posture.

Practice peer code reviews, CI/CD checks, linting, and verification. This can reduce the number of
common accidents and mistakes that could happen due to oversight.

Look for purpose-built IaC security solutions that help you establish a secure and efficient IaC
pipeline. The benefit of these solutions is that you can configure them to match your organization’s
security policies due to their extensibility and cloud provider coverage.

Managing Infrastructure
as Code Risks in MAD

How Devs Should Detect and Mitigate the Most Common IaC Risks

Most of the common risks (as we covered in Part 2 of this e-book series) can be mitigated by adhering to
some common security best practices. Here are a few recommendations:

E-BOOK | APPSEC CONSIDERATIONS FOR MODERN APPLICATION DEVELOPMENT | 10

As organizations continue to move toward shorter development cycles, more frequent releases, and
increasingly complex application architectures, it’s become more important than ever to consider
application security at all stages of the development life cycle as well as make secure coding skills
a top priority.

This means development teams’ mindsets need to evolve, and those building your software need to
take greater responsibility for the security of the end product. Instead of relying on an extensive post-
development testing phase to root out security shortfalls and bolt on temporary solutions, teams must
take a shift-left approach by adding security skills training right when developers need it most: while
they’re developing code.

Effective AppSec awareness and training programs should harness the advantages of modern technology.
Much like an engaging mobile app can influence its users’ behavior, the foundation for efficient secure
coding practices can be rooted in gaming principles and technology-driven traits that keep users engaged
in the long term.

Gamification—the application of game design elements and principles in non-game contexts—has
widely recognized benefits, yet most AppSec awareness and training solutions don’t take advantage
of it. Gamified elements can be injected into multiple parts of the program, from simulated attacker
vs. defender scenarios to unlocking “achievements.”

An effective shift-left approach to AppSec in MAD requires developers to become more aware of
security risks in the design and development phases, on top of employing secure coding practices while
developing code. That’s sound in theory, but changing the culture like this will require buy-in from the
development team itself. One way your organization can make this happen is by empowering select
developers to act as security champions.

Managing Developer
AppSec Awareness and
Training in MAD

E-BOOK | APPSEC CONSIDERATIONS FOR MODERN APPLICATION DEVELOPMENT | 11

The Role of a Security Champion

In MAD, security champions are motivated developers interested in continuously exploring and adopting
best practices for coding securely. These developers must be willing to take an influential position in
their team and the wider organization.

Security champions act as resources for the security team, facilitating a better understanding of the
processes the development team follows. They also need to be willing to assist fellow devs with security-
related questions, educate them on secure coding practices, and help ensure their applications are
being built with security in mind. At a higher level, security champions can be involved in setting your
organization’s standards and policies for coding securely in addition to bringing greater awareness of
security concerns to the organization.

> The Benefits of Being a Security Champion

For developers who fill this crucial role of mentor and evangelist, the responsibilities come with career-
building benefits. Like any specialized proficiency, it can earn recognition from leadership, which can
go a long way toward opening doors for advancement. By positioning themselves as experts on secure
development practices, your security champions make themselves invaluable to the organization.

Alongside those loftier career benefits, mentoring other developers can be just as rewarding. Through
leading by example and serving as resources for security-related concerns, security champions can earn
their peers’ respect while helping instill a mindset of shared responsibility for security at the developer
level. This can facilitate positive cultural change, enabling the development of more secure end products
while helping your organization move toward a less siloed work environment in which security and
development teams work better together.

E-BOOK | APPSEC CONSIDERATIONS FOR MODERN APPLICATION DEVELOPMENT | 12

> The Challenge of Culture Change in MAD

No one can argue the importance of AppSec, but security champions may face pushback from fellow
devs who feel that engaging these security concerns at the design and development phases will slow
them down. These devs might see the upfront cost and overhead of integrating security into their
process and feel that it will strain the team’s ability to deliver changes efficiently. What they’re missing,
though, is that this culture change will lead to significant savings at the end of the development cycle.

Making security a shared responsibility across domains and considering it at the earliest points in
the development process lowers risk—both the inherent risk of introducing security vulnerabilities in
production and the likelihood of threats to the delivery schedule. In other words, continuously evaluating
and addressing security issues throughout development makes it far less likely that you’ll discover
significant security vulnerabilities (the kind that can upend a release schedule) as critical delivery
deadlines approach.

That’s quite a few AppSec considerations to keep in mind. Let’s briefly look at AST in the context of MAD.

E-BOOK | APPSEC CONSIDERATIONS FOR MODERN APPLICATION DEVELOPMENT | 13

MAD techniques and tooling give developers a huge amount of flexibility and control over their own
destinies. Yet even with all these advancements, the same core problems applications have always
faced (like security) are becoming even more critical to address. Since microservices architecture has
become one of the most widely used development models, the number of attack surfaces in MAD has
increased exponentially. In addition, many of these services are containerized, and they rely heavily on
open source projects for their foundational pieces, as does the IaC that deploys them.

With all these new attack vectors, the risks have never been greater. They begin with longer supply
chains that fall outside the development team’s sphere of control. These supply chains include a
seemingly endless list of open source libraries and frameworks, and they’re used extensively in
possibly thousands of APIs to underpin critical web and mobile applications.

This is where concepts like AppSec, DevSecOps, and SecOps come into the mix. While distinct, the
teams all share the same goal: identify and reduce risks across their organization’s application portfolio
and supporting infrastructure. These teams leverage MAD processes to introduce modern AST solutions
into their SCMs and CI/CD pipelines. Simply put, modern application development needs modern
security solutions, and that means modern AST.

AST solutions aren’t just being integrated into pipelines along with the shift-left mentality; they’re also
being placed as close as possible to the developers. The earlier in your application’s life cycle you can
detect a bug, defect, or vulnerability, the faster you can fix it. Ideally, your product will have been fully
scanned multiple times and in multiple ways by the time it’s ready for the final sign-off before production.

To wrap things up, let’s review some tips you should consider around AST in MAD.

Application Security
Testing Challenges in MAD

E-BOOK | APPSEC CONSIDERATIONS FOR MODERN APPLICATION DEVELOPMENT | 14

Seven AST Tips to
Consider in MAD
When you’re looking for AST solutions that fit well into your MAD initiatives, you need to be sure you’re
enabling digital transformation, not hindering it. A modern AST solution must:

Be built for cloud development and fully
understand modern tech stacks, architectures,
processes, and vulnerabilities.

Be capable of integrating with developer workflows,
automating scans across the SDLC, and correlating
results to pinpoint risks using unified dashboards
and broad reporting capabilities.

Provide one-click cloud-based scans for a
single stakeholder using one process, from one
platform, with no installations and no scanning
servers required.

Include SAST, SCA, container security, IaC
security, API security, supply chain security, an
orchestration layer, a correlation layer, advanced
reporting, and developer training.

Deliver automated scans with various scan
engines and correlate results across your
codebase, providing complete and accurate
results through a platform-like approach.

Come with standard support, options for premium
support, unlimited scans, concurrent scans,
incremental scans, customization, plugins, and
add-ons.

Allow flexible deployments, with identical
capacities whether used on-premises, in the
cloud, or in hybrid environments.

E-BOOK | APPSEC CONSIDERATIONS FOR MODERN APPLICATION DEVELOPMENT | 15

© 2022 Checkmarx Ltd. All rights reserved. Checkmarx is a registered trademark of Checkmarx Ltd. All other marks and trade names mentioned
herein belong to their respective owners. Checkmarx reserves the right to modify, transfer, or otherwise revise this publication at its sole discretion
and without notice. cx_eb_mad-part3_050122

About Checkmarx
Checkmarx is constantly pushing the boundaries of Application Security Testing to make security seamless and
simple for the world’s developers while giving CISOs the confidence and control they need. As the AppSec testing
leader, we provide the industry’s most comprehensive solutions, giving development and security teams unparalleled
accuracy, coverage, visibility, and guidance to reduce risk across all components of modern software – including
proprietary code, open source, APIs, and Infrastructure as Code. Over 1,600 customers, including half of the Fortune
50, trust our security technology, expert research, and global services to securely optimize development, at both
speed and scale. For more information, visit our website, check out our blog, or follow us on LinkedIn, Twitter,
YouTube, and Facebook.

Conclusion
We’ve worked to fill this three-part series with nearly everything you need to know to approach modern
application development with confidence, skill, and know-how. We hope you’ll share it with other
leaders, AppSec professionals, and developers in your organization and elsewhere.

One thing’s for sure: With the enormous migration to newer software development and deployment
approaches, AppSec is a moving target. From an evolution to almost 100% cloud native, tons of
microservices, and vast numbers of APIs to the tremendous consumption of open source, containers
galore, and IaC in use everywhere possible, MAD isn’t going anywhere but up.

https://checkmarx.com/
https://checkmarx.com/blog/
https://www.linkedin.com/company/checkmarx
https://twitter.com/checkmarx
https://www.youtube.com/user/CheckmarxResearchLab
https://www.facebook.com/Checkmarx.Source.Code.Analysis

E-BOOK | APPSEC CONSIDERATIONS FOR MODERN APPLICATION DEVELOPMENT | 16
Checkmarx at a Glance

1,675+
Customers in 70 countries

30+
Languages & frameworks

750
Employees in 25 countries

500k+
KICS downloads in 2021

45%
of the Fortune 50 are customers

